Detailed Proof of IPW Identification

\({\scriptstyle E[Y(1)-Y(0)] \\ = E[\frac{\mathbb{1}(T=1)Y}{e(W)}]-E[\frac{\mathbb{1}(T=0)Y}{1-e(W)}]}\)
Causal Inference
Author

Jia Zhang

Published

January 5, 2023

We need to prove that under unconfoundedness and positivity,

\(EY(t) = E\frac{\mathbb{1}(T=t)Y}{P(t|W)}.\)

Proof

\[ \begin{split} EY(t) &= E(Y|do(t))\\ &= EE(Y|do(t), W)\\ &= EE(Y|t, W)\\ &= \Sigma_w E(Y|t, w) P(w)\\ &= \Sigma_w \Sigma_y y P(y|t,w) P(w)\\ &= \Sigma_w \Sigma_y y \frac{P(y,t,w)}{P(t,w)} P(w)\\ &= \Sigma_w \Sigma_y y P(y,t,w)\frac{1}{P(t|w)}\\ &= \Sigma_w \Sigma_y y E(\mathbb{1}(Y=y,T=t,W=w))\frac{1}{P(t|w)}\\ &= \Sigma_w E(\Sigma_y y \mathbb{1}(Y=y) \mathbb{1}(T=t,W=w))\frac{1}{P(t|w)}\\ &= \Sigma_w E(Y \mathbb{1}(T=t,W=w))\frac{1}{P(t|w)}\\ &= E(Y \mathbb{1}(T=t) \Sigma_w \mathbb{1}(W=w)\frac{1}{P(t|w)})\\ &= E(Y \mathbb{1}(T=t) \frac{1}{P(t|W)}) \end{split} \]

Note that we used the following properties of the indicator function:

Citation

BibTeX citation:
@online{zhang2023,
  author = {Jia Zhang},
  title = {Detailed {Proof} of {IPW} {Identification}},
  date = {2023-01-05},
  url = {https://jiazhang42.github.io/mysite/blog/ipw/},
  langid = {en}
}
For attribution, please cite this work as:
Jia Zhang. 2023. “Detailed Proof of IPW Identification.” January 5, 2023. https://jiazhang42.github.io/mysite/blog/ipw/.